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ABSTRACT 

For t ~ [a, b], let A(t) be the unbounded operator in H ~ (G) associated with 
an elliptic-boundary value problem that satisfies Agrnon's conditions on the 
rays 2 = ___ it, r >__ 0. Existence and uniqueness results are obtained for weak 
and strict solutions of two-point problems of the type (du/dt) -- A (t) u(t) 
=f ( t ) ,  EI(~) u (~) = u~, E2 (fl) u (fl) = u#. Here [~, fl) ~ [a, b], E1 (~) and 
E2 (.8) are spectral projections associated with A(c0 and A(fl) respectively, 
and A(~)Ex (~) and = A (fl)E2 (P) are infinitesimal generators of analytic 
semigroups.When A(t) andf(t) are analytic in a convex, complex neighborhood 
O of [a, b] we show that for some Oi, i = 1,2, any solution of du/dt = A(t)u (t) 
= f ( t )  in [a, bl is analytic and satisfies the above equation in the set O ~ ( t ;  t 
:~ a,t  ~ b, I arg<t--a> I < 0,  I arg~b--t) l < 02}. 

1. Introduction 

Consider the abstract parabolic equation 

du 
(1.1) dt A(t)u(t) = f ( t )  

where for t ~ [a, b], A(t) is the unbounded operator in H~ associated with an 

elliptic boundary value problem that satisfies Agmon's conditions on the rays 

2 = i~ and 2 = - iz, z > 0 (see [1] and [-9]). We introduce in this work a class 

of two-point problems for (1.1) that are well posed for sufficiently small subintervals 

[~, fl] of [a, b]. Existence and uniqueness results for weak and strict solutions of 

such problems are obtained. 

It is shown that any solution u(t) of (1.1) in [~, fl] satisfies an inequality of the 
type 
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I1.(0 II =< c(ll E,(=).)11 + II em(n)u(n)11 + m a x  liT(0 II) 
i �9 [~,#1 

provided that f l - ~  is small enough. E~(~) and E2(fl) are certain spectral projection 

associated with the operators A(~) and A(fl) respectively. 

When A(t) andf ( t )  are analytic in a convex, complex neighborhood 0 of [a, b] 

we show that for some 0~, i = 1,2, any solution of (1.1) in [a, b] is analytic and 

satisfies the equation (1.1) in the set O o ( t ; t # a ,  t # b ,  [arg( t -a) l<O~,  

[arg(b- t ) [  < 0~}. For A(t) independent of t, this result follows from the results 

of [2]. For p = 2 the analyticity of  u(0 in (a, b) follows from [61 and [101. 

2. Notation 

Given two Banach spaces X and Y, we denote by B(X, Y) the space of bounded 

linear operators from X to Y. X* is the adjoint space of  X. The domain of a 

closed and densely defined linear operator A in X is denoted by D(A). p(A) is the 

resolvent set of A and a(A) is the spectrum of A. The norm of an element u ~ X 

is denoted by II u Ux, and when X is fixed, by II u II. For k = 0, 1,..., ck([a,b],g)  

is the space of k times continuously differentiable functions from the interval 

[a, b] to X. For u(O E ck([a, bl, X)  and j = 0,. . . ,  k, I u(t)1i = maxt~ ta,b~ 

JJ (dr/d,~) u~O IIx. C<[a, b], X~ = C o ~E", b], X) and Coo<Ea, bl, X) = n~=oCkCEa,b]X). 
WhenX is fixed we set Ck[a,b] = ck([a,b],X) and Coo[a, b] = Coo([a, b], X). 

For k = 0,1, . . .  and u > 0  ck,([a, bl, X)  is the subset of elements u(t) of 

ck([a, b], X) for which there exists a constant C such that for tl, t2 ~ [a, b] we 

have [1 (d k/dtk)u(q) - (d k/dt k) u(t2)11 --< cl tl - ,21". 
Let G be a bounded domain in R" with boundary OG of class C ~176 Denote by 

Coo(G) the set of I tuples of infinitely differentiable complex-valued functions in G, 

the closure of G. For 1 < p < oo and co = 0, 1,-.., H~ is the completion of  

C~(G) under the norm 2~1,I<_,o ( y l O ' f ( x ) l ' d x )  x/'. We use the standard notation 

= = 91. . .  D v . o~ = (cq,...,cz,) x (xx, '" ,x~) ,D j i(O/axj),D = (D1,. . . ,D~)andD ~= ~ ~ 

is a multi-index of non-negative integers and [ct[ = ]~L1 ~. 

3. Theorems and proofs 

For t E la, b], let A(t) be a closed and densely defined linear operator in a 

Banach space X. We assume, in the rest of the paper that the following conditions 

are satisfied. 

Condition I. For i = 1, 2 and t e [a, b], E~(t) is a bounded projection in X 
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and A(t) is completely reduced by the direct sum decomposition X = 

Y.:= l e E (t)X. 
Condition II. Ei(t ) e C1([a, b], B(X, X)) for i = 1, 2. 

Condition III. There exist complex numbers Pi, i=  1, 2, such that for i = 1, 2, 

the operator Li(t) = ( -  1)t+~(A(t)Ei(t)+ pJ) satisfies the three conditions: 

(i) For t e [a, b], the resolvent set of Lt(t ) contains the closed sector 

F ( - � 8 9  �89 + 0) with 0 < 0 < �89 

(ii) Li(t)- t e C1([a, b], B(X, X)). 

(iii) There exist constants Cj such that for j = 0, 1,26 F ( - � 8 9  0, �89 + 0) 

and t �9 [a, b] we have 

o j cj 
(3.1) la-~-(A- L,(t)) - t  < 

DEFINITION 3.1. Let f ( t )  �9 C[a, b]. Suppose that Ua �9 EI(a)X and that ub �9 

Ez(b)X. We say that r is a test function for the two-point problem 

du 
(3.2) dt A(t)u(t) = f(t), 

(3.3) E~(a)u(a) = ua, 

(3.4) E2(b)u(b) = Ub 

if the following conditions are satisfied: 

(i) r e D(A(t)*) for t e [a, b], 

(ii) r �9 C'([a,  b], X*) and A(t)*r �9 C(Ea, b], X*), 

(iii) E2(a)*r ) = 0 and E~(b)*r -- O. 

We say that u(t) is a weak solution of (3.2), (3.3), and (3.4) if u(t) ~ C[a, b] and  

f b fb (3.5) (u(t), d/(t) + A(t)*r dt + (f(t), r + (Uo, r r = 0 
a 

for every test function r of  (3.2), (3.3), and (3.4). 

We say that u(t) is a strict solution of (3.2), (3.3), and (3.4) if 

u(t) e C[a, b] ~ Cl(a, b) 

for t e(a ,  b), u(t)�9 and equation (3.2) holds; and the relations (3.3) and 

(3.4) are satisfied. 

We shall use in the rest of the paper the following results of Kato and Tanabr 
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[7]. Suppose that L(t) satisfies (i), (ii), and (iii) of Condition III. Assume that 

B(t) ~ C([a, b], B(X, X). Then the initial value problem 

du 
(3.6) d-T = (L(t) + B(t))u(t) + f(t) ,  

(3.7) u(a) = u. 

has a unique weak solution for every uo ~X. This solution is given by u(O 

= U(t,a)u. + S'oU(t,r where U(t,O is the evolution operator associated 

with L(0 + 8(t). This result is proved in [7] when B(t) = 0 and can be verified in 

the general case using the methods of 1-7]. It is shown in [6] that the above- 

mentioned solution u(t) is a strict solution provided that 

L(t)- 1 ~ C] ([a, b], B(X, X)), B(t) ~ Ca([a, b], B(X, X)), 

and f( t)  ~ C~[a, b] for some positive constants ~, fl, and y. 

DEFINITION 3.2. Assume that A(t) satisfies Conditions I, II, and II1. For i = 1, 2, 

let Bi(t) 2 = Zj  = 1 Ej(t)Ej(t) - pfl. Let Kl(t, ~), a <- ~ <- t < b, be the evolution 

operator associated with Ll(t) + Ba(t). Let H(t, ~), a <_ z < t <- b, be the evolution 

operator associated with L2(a + b - t) - B2(a + b - t), and for a _< t < v < b set 

Ka(t,~) = H(a + b - t, a + b - z ) .  Define W~(t,v) for a < ~  < t < b, and W2(t,z) 

for a<_ t<  T< b by 

(3.8/ W~(t, z) = K,(t, z)Ei(z)E'i(z). 

LEMMA 3.3. Assume that A(t) satisfies Conditions I, II, and III. Then u(t) 

is a weak solution of (3.2), (3.3), and (3.4) and, for i = 1,2, us(t) = El(t)u(t ) if 

and only if u,(t) ~ C[a, b] for i = 1, 2 and 

(3.9) ux(t) = Kt(t, a)u, + Kl(t, z)Et(T)f(z)d~ + Wt(t, z)ug(z)d~, 

f) (3.10) u2(0 = K2(t,b)ub + K2(t,~)E2(z)f(z)dz + W2(t,z)ul(z)dz. 

PROOF. It follows, from the remarks preceding this lemma and from the 

definition of Kl(t, z) and Wi(t, z) for i = 1, 2, that ui(t ) ~ C[a, b] for i = 1, 2, and 

(3.9) and (3.10) hold if and only if ul(t) is a weak solution of 

(3.11) dUtdt = (A(t)El(t) + t=t2 E'i(t)~i(t). ul(t) + El(t)(f(t)  + Et(t)u'2(t)). 

(3.12) ul(a) = Ua, 

and u2(t) is the weak solution of 
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du2_ 2 
dt = (A(t)E2(t) + y~ Ei(t)'Ei(t))u2(t) + Ee(t)(f(t)  + E~(t)ul(t)) , 

i = l  

uz(b)  = ub. 

Let u(O be a weak solution of (3.2), (3.3), and (3.4) and let ~(0 be a test function 

of(3.11) and (3.12). Since (A(t)E~(t))*=A(t)*E~(t)* we have O(t)eD(A(t)*El(t)*) 

for t e (a, b). Also ~(0 ~ Cl([ a, b], X*), A(O*Et(t)*r ~ C([a, b], X*), and 

O(b) = 0. Consequently El(t)*~k(O is a test function for the two-point problem 

(3.2), (3.3), and (3.4) and 

f b(u(t), (El(t)*~(t))' + A(t)*El(t)*~b(t))dt + lab(f (t), El(t)*~(t))dt 

(3.15) 
+ (u~,E~(a)*~(a))  = O. 

It follows from (3.15) that 

r.b 2 

j (El(t) u(t), ~( t ) '+  (A(t)*Es(O* + Z E~(t)*E~(t)*')~,(t) )at 
(3.16) " t=1 

+ (El(t)f(t) + E~(t)E2(t)u(t), O(t)) dt + (u,, O(a)) = O. 

(3.16) implies that E~(t)u(t) is a weak solution of (3.11) and (3.12). One verifies 

similarly that E2(t)u(t) is a weak solution of (3.13) and (3.14) and this implies that 

(3.9) and (3.10) hold. 

Before proving the second part of  this lemma we make the following observation. 

Let g(t)e  C[a, hi. Suppose that v, e E~(a)X and that v(0 is the weak solution of 

the initial value problem 

(3.17) ~ = A(t)El(t) + E'~(t)E~(t) v(t) + E~(t)g(t), 
i=  

(3.18) v(a) = Va. 

Then El(t)v(t) = v(t) for t e Fa, b]. To verify this assertion note that for every 

test function q~(0 of (3.17) and (3.18), El(t)*~)(O is a test function for the same 

problem and 

v(t), (El(t)*~(t))' + (A(t)*EI(O* + Y Ei(t)*E,(t)*') El(t)*d~(t) dt 
i = l  

(3.19) 

+ (E~(t)g(t), El(t)*d?(t))dt + (Va, El(a)*dp(a)) = O. 
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Since 

E~(t)*' + (~1  E~(t)*E~(t)*')El(t)*=E~(t)* (~=~ E~(t)*E~(t)*') 

it follows from (3.18) that 

(3.20) f) ( ) (E2(t)o(t), ~b(t)' + A(t)*El(t)* + E Ei(t)*E,s ~(t))dt 
1=1  

~ b 

+ (E~(t)g(t), q~(t)) dt + (v~, ~p(a)) = O. 

Consequently Ex(t)v(t) is a weak solution of (3.17) and (3.18) and the uniqueness 

of the weak solution of (3.17) and (3.18) implies that v(t) = El(t)v(t) for t e [a, b]. 
One verifies similarly that if Vb ~ E2(b)X and if v(t) is a weak solution of 

(3.21) di  = A(t)E2(t) + ~ E'~(t)E,(t) v(t) + E2(t)g(t), 
l = l  

(3.22) v(b) = Vb, 

then E2(t)v(t ) = v(t) for t e [a, b]. 

Let u~(t)e C[a, b] for i = 1,2. Suppose that ul(t) is a weak solution of (2.11) 

and (2.12), and that u2(t) is a weak solution of (3.13) and (3.14). The last observa- 

tion implies that Ei(t)ui(t)= ui(t) for i = 1, 2 and t e [a, b]. Let ~b(t) be a test 

function for (3.2), (3.3), and (3.4). Then El(t)*~p(t) is a test function for (3.11) and 

(3.12) and 

f)( ) ul(t), (El(t)*dp(t) )' + (A(t)*E~(t)* + ~ E,(t)*E,(t)*')Et(t)*~p(t ) dt 
i = l  

(3.23) + (El(t)E,(t)'ue(t),El(t)q~(t))dt + (Et(r)f(t),Et(t)*d~(t))dt 

+ (uo, g l (a )*r  = 0. 

Since El(t)*El(t)*'Ej(t)* = 0 and ui(t) = E~(t)u(t) for i = 1,2, it follows from 

(3.23) that 

f) f) (ul(t), q~(t)' + (A(t)* + El(t)*')ck(t))dt + (El(r)'u2(t), c~(t))dt 

(3.24) 

fo 
b( 

+ El( t ) f ( t ) ,  tk(t)) dt + (uo, ~p(a)) = O. 

One verifies similarly that 
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f' (uz(t), c~(t)' § (A(t)* § Ez(t)*')q~(t)) at § (E2(t)'u 1(0, c~(t) )dt 
(3.25) 

+ E 2 ( t ) f ( t ) ,  q~(t)) d t  - (Ub, q~(b)) = O. 

Finally set u( t )= 2~=lui(t). Then E~(t)u(t)= ut(t) for i =  1,2. Since El(t) '  

+ E2(t)' -- 0.for t e [a, b] it follows from (3.24) and (3.25) that (3.5) holds. Hence 

u(t) is a weak solution of (3.2), (3.3), and (3.4). 

D~INmON 3.4. Let [e, fl] _ [a, b]. Let Q1, Q2 be the bounded operators from 

C[a, B] to C[a, ~] that are defined by 

(3.26) 

and 

ft  # 
(3.27) Q2g(t) = W2(t, z)g(z)dz 

respectively. Let R 1 = QzQ1 and set R 2 = Q1Q2. 

THEOREM 3.5. Suppose that A(t) satisfies Conditions I, II,  and III.  There 

exists a 5 > 0 such that for every [a, f l ] c  [a, b] that satisfies (fl - a) 5 < 1 the 

two-point problem 

du 
(3.28) dt = A(t)u(t) + f(t) ,  

(3.29) El(a)u(ct) = u~, 

(3.30) E2(fl)u(fl) = up 

has a unique weak solution for every f ~ C[~t, fl], u~ e El(ct)X and up e E2(fl)X. 

There exists a constant C such that for every solution u(t) of (3.28), (3.29), and 

(3.30) and t ~ [a, fl] we have 11 u(t)II-< c(llu, ll § II u, II § max,,t,.#~llf(t)ll). 
Pgoov. Let 

Co = m a x  ( max II w,(,,~)ll, max II w2(t,z)ll). 
I 

For every g(t) r C[a, fl] and for i = 1, 2 we have 

(3.31) ]Rig(t) 1o < (Co(fl - o0) 2 ]g(t)1o. 

Let 
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K ol0 = g t t ,~ )u~  + g l t ,  z)/~(~)f(~)d~ 

411 

ff (3.33) gz(t) = K2(t,/3)u# + Kz(t, r 

Suppose that Co(/3 - ~) < l. Then the system of equations 

(3.34) ul(t) = gl(t) + Q1u2(t), 

(3.35) Uz(t) = gz(t) + Q2Ul(t) 

has a unique solution that is given by 

(3.36) Ua(t) = ~, RJ291(t) + QI ~ R~gz(t) and 
J=O J~-O 

oo 

(3.37) ult)  = Q~ ~ R~g~Ct)+ ~ RJ, gtt). 
J =o j = o  

Lemma 3.3 ensures that the two-point problem (3.27), (3.28), and (3.29) has a 

unique solution that is given by 
co 

(3.38) u(t) = (I + Q2) ~ R1201(t) + (I + QI) 2~ Rlto2(t) �9 
J=O j = o  

LEMMA 3.6. Let u(t) be a weak solution of(3.2), (3.3), and (3.4). For i= 1, 2, 

set u+(t) = E+(t)u(t). Let [g, 13] ~ [a, b]. Set 

(3.39) 01(t) = Kl(t,e)ul(e) + Kl(t,~)El(z)f(T)d~ 

and set f' 
(3.40) 02(0 = K2(t,/3)u2(/3) + K2(t, OE2(~)f(~)d~. 

Then u~(t) and u2(O satisfy the equations (3.34) and (3.35) in [e, fl]. 

PROOF. Lemma 3.6 is an immediate consequence of I.emma 3.3 and of the 

relations Kx(t, a) --- Kx(t, e)KI(e, a) and K2(t, b) = K2(t,/3)K2(/3, b). 

THEOREM 3.7. Suppose that A(t) satisfies Conditions I, lI, and HI. Assume 

in addition that for some positive ~, /3, and ~ and for i = 1,2, 

L,(t)-x ~ C] ([a, b], B(X, X)), E,(t) E C~ ([a, b], B(X, X)), 

and f(t) ~ C~([a, b], B(X, X)). Then every weak solution of (3.2), (3.3), and (3.4) 

is a strict solution. 
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PROOF. For a < r < t < b let St(t ,z ) = Kl(t,~) - exp((t - z)Ll(t)). It follows 

from the assumptions of  the present theorem and from the results of 16] that there 

exist positive constants C and ~ such that 

z)Ll(t)) < C(t ~)-1, (3.41) 1[--~-- exp ( ( t -  - 

n( 0 i1 (3.42) ~ -  + exp ((t - z)Ll(t)) < C, and 

(3.43) l]-~-t Sl(t,z) [[ < C( t -~) - ,+6.  

Set P~(t) = El(t)E'x(t). Let [~,fl] _~ [a, b] and suppose that h(t)~ Cl[~,fl]. Then 

Qlh(t)~ Cl[~,fl] and 

d f f  O dt Qlh(t) = -~i -Sl(t '  z)Pl(z)h(z)d~ 

t" t 
+ J ,  - ~  exp ((t - z)Lx(t)) (Pt(T) - Pl(t))h(v)d~ 

(3.44) 
t" t 

+ J~ -~-exp(( t  - z)Ll(t))Pl(t) (h(z) - h(t))dz 

~ + exp((t - ~)Ll(t))d~P~(t)h(t) + exp((t - e)Lt(t))P~(t)h(t ). + 

Let 

MI -- sup I1 1 a~_~<l~_b 

It follows from (3.41), (3.42), and (3.43) that there exists a constant C such that 

for i = 1 we have 

(3.45) [ a,h(t) [1 <= C[ h(t) Io + M,(//- ~)[ h(t)I1. 

Similarly there exist constants M2 and C such that (3.42) holds for i = 2. Let 

C1 = max~=l.z My Then there exists a C such that for i = 1,2 

(3.46) [ R,h(t) [i < Cl h(t) [o + (Cl(fl - ~))21 h(t) I1" 

Let u(t) be a weak solution of (3.2), (3.3), and (3.4). For i =  1,2 set ut(t) 
= gi(t)u(t). Define the function 91(0 and 92(0 by (3.39) and (3.40) respectively. 

Observe that there exists a C such that II (d/dO l(oll <= Arguments 

similar to those used in the derivation of (3.45) ensure the existence of  a C such 

that II (d/dOQ2g,(t) [I < C ln(t - ~) and R2g1(t)e Ct[~,fl]. Similarly Rlg2(t ) 
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ec l [c t ,  fl]. Suppose that for i =  0,1 C ~ ( f l - c 0 <  1. Here Co and Ci are the 

constants appearing in the right-hand side of (3.31) and (3.46) respectively. 

Estimates (3.31) and (3.46) guarantee that Y~f=lRJ2gl(O~Ct[~,fl] and that 

~~ fl]. Lemma 3.6 implies that ul(t) and uz(t) are given by 

(3.36) and (3.37) respectively. Since el(t), Q2gt(t), g2(t), and Qlg2(t) belong to 

Cl(u, r ) a l s o  ui(t)~Cl(c~,fl) for i - - 1 ,  2. Consequently u ( t )~  Ct(a, b). 

It follows from Lemma 3.6 that ut(t) is the weak solution of (3.11) with 

initial value equal to ul(ct). Since u2(t ) ~ C~[ct, fl], the above-mentioned resu]~,~ of 

[-7] and the assumptions of the present theorem guarantee that us(t) if a strict 

solution of (3.11). Consequently Ux(t) ~ 3(A(t)Et(t)) for t ~ (0q fl]. Since ul(t ) 

= El(t)u(t), ul(t) ~ D(A(t)) for t ~ (ct, fl]. Similarly u2(0 ~ O(A(t)) for t ~ [0t, fl). 

Hence u(t) ~ O(A(t)) for t ~ (a, b) and u(0 is a strict solution of(3.2), (3.3), and (3.4). 

Let A(x, D) be an l x l system of differential operators that is elliptic of order 

to in G with coefficients that are infinitely differentiable in G. Consider boundary 

operators Bj(x, D), j = 1,..., �89 such that Bj(x, D) is a 1 x I system of differential 

operators of order coj < to with coefficients that are infinitely differentiable in 4.  

Denote by H'~ {B j}) the completion of the set {u; u ~ C*(G), Bj(x, D)u = 0 
on 0G for j = 1,... ,  {col} in H'~ Let A~ be the unbounded linear operator in 

H~ such that D(A~) = n '~ {B j}) and A~u = A(x, D)u for u ~ D(APn). 

It is proved in [3] that if A(x, D) and Bj(x, D), j = 1,..., �89 satisfy Agmon's  

conditions (see [1] and [9]) on the rays lr and l_r then there exist bounded 

projections E l and E2 in H ~ such that A~Et and - A~E2 are infinitesimal 

generators of analytic semigroups and A~ is completely reduced by the direct sum 

decomposition 
2 

H~ = 2~ 0 E~H~ 
i = l  

Regularity properties of Es(t) and A~(t)E~(t), i = 1, 2, are investigated in [4] for 

A(t ,x ,D) and Bj(t,x,D), j = 1,...,�89 dependent on t. 

TrtEOREM 3.8. For t~ [a, b] let A(t, x,D) be an l x l differential system that 

is elliptic of order to in G. Suppose that for t ~ G the boundary operator Bj(t, x, D), 

j = 1,..., �89 is of order ogj < oJ in d. Let a(t, x) be any of the coefficients of 

A(t, x, O) or of Bj(t, x, 0), j = 1,..., �89 

O) Assume that for every multi-index c~, O~/Ox'a(t,x) and d/Ot a~/ax'a(t,x) 

exist and are continuous in [a, b] x G. For every t o ~ [a, b] there exists an r > 0 

such that A~n(t) satisfies the assumptions of Theorem 3.5 in 
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[a',b'] = [a,b] n{t;  I t -  to] =< r}. 

(ii) I f  in addition to the assumptions of (i) for every multi-index ~, 

a 
at ax ~ a(t,x) 

is Holder continuous with respect to t in [a, b], uniformly with respect to x in G, 

then A~(t) satisfies in [a ' ,  b ']  the assumptions oJ Theorem 3.7. 

PRoov. The proof of [4, Th. 4.8] ensures the validity of (i) and (ii) provided that 

for every multi-index ct there exist constants Ho and H such that for (t, x) e [a, b], 

G and n = 0, 1,..., we have I (~' ~at") (a ~/ax ~) a(t, x) I <= HoH"M, and M,,  n 

= 0, 1,..., are suitably chosen constants. The proof of the present theorem is 

obtained from the proof of [4, Th. 4.8] with obvious modifications. 

Let 0 < 0 < �89 and write t > T (mod 0) if t ~ �9 and l a r g ( t -  ~)1 < 0. t_~ 

(mod 0) if t > ~ (rood 0) or t = z. Let 0 < 0, < �89 for i = 1, 2. Given a complex, 

convex neighborhood O of an interval In, b], set 

O([a, b], 01, 02) = O r~ {t; t > a (rood 01), b > t (rood 02)). 

Let 0 be a convex, complex neighborhood of  [a, b]. For t �9 O let L(t) be a 

closed and densely defined linear operator in X. Assume that the following 

conditions are satisfied: 

(i)' For t � 9  O, the resolvent set of L(t) contains the closed sector 

r ' ( -  �89  0, �89 0 < 0  <�89 

(ii)' L(t)- 1 is analytic in O. 

(iii)' There exists a constant M such that for 2 �9 F ( - � 8 9  O, �89 + 0), and 

t �9 0 we have 

(3.47) 1 ( 2 -  L(t))-I [ < M / I 2  I. 

It is shown in [8] that the evolution operator U(t, ~) of L(t) has a continuation 

that is analytic for t, �9 such that t, z �9 O and t > ~ (mod 0) and is strongly con- 

tinuous for t, ~ e O such that t > z (rood 0). Note that if B(t) e B(X, X) for t e O 

and B(O is analytic in O then there exists a complex/~ such that L(t) + B(t) + I~I 

satisfies (i)', (ii)', and (iii)'. 

TnEOPa~M 3.9. For t � 9  0 let A(t) be a closed and densely defined linear 

operator in X. Assume that for t �9 0 and i = 1,2, El(t ) is a bounded projection 

and that A(t) is completely reduced by the direct sum decomposition 



Vol. 16, 1973 TWO POINT PROBLEMS 415 

2 

x = Z ~ e~Ox. 
1=1 

Suppose that for  i = 1, 2, Ei(t) is analytic in O. Assume that there exist constants 

Pi, i --- 1,2 such that Ll(t) --- A(t)El(t) + I~1I and L2( 0 -  (A(t)E2(t) + p2I) 

satisfy (i)', (ii)', and (iii)' with 0 = 01 and 0 = 02 respectively. Let f ( t )  be 

analytic in 0 and suppose that u(t) is a solution of (3.2), (3.3), and (3.4). Then 

u(t) has an extension that is analytic in O([a, b], Ox, 02). For t e O([a, b3, 01, 02) 

we have u(O e D(A(t)) and (du /dt) - A(t)u(t) = f( t) .  

PROOF. For  i = 1, 2 and t e In, b 3, set u,(0 = Et(Ou(O. Let O' be a convex, 

complex neighborhood of I-a, b3 such that the closure of O' is contained in O. Let 

0 < r < 0j for i = 1, 2. Let [~, 173 c [a, b]. Define the functions 01(0 and 02(0 

with the help of (3.39) and (3.40) respectively, and note that equations (3.34) and 

(3.35) are satisfied [5, Part 3, Lem. 2.13 and the above-mentioned results of [83 

gaxralt~: that for j = 1, 2 for i = 1, 2, and for n = 0, 1..., RTg~(t) has an extension 

that is analytic in O'([x, f13, r162 Let p be the diameter of O'([~r fl], r  r and 

choose M so that [ Wl(t, z)[ < M for t, z ~ 0 ' ,  t > z (mod r and ] W2(t, z) l < M 

for t, z e O ' ,  z > t (mod r Then there exists a C such that for i ,j  = 1,2, for 

n = 0, 1,... ,  and for t e O'([~,/~3, r r we have l RTg (t) l C(Mp) 2". Let 

Mp < 1. Then for te[~,f l3,  ul(t) and u2{t ) are given by the right-hand side of 

(3.36) and (3.37) respectively and have analytic extensions to O'([~,fl], r  r 

The last observation implies that u(t) has an analytic extension to O'([~,/~], CD r 

Hence there exists an h > 0 such that u(t) has an analytic extension to 

O'([a, b], r r ~ {t; l t.tl < h}. 

For i =  1,2 and t eO ' ( [a ,b  3, CDr N{t ;  Ilmtl < h} set us(t ) = E,(t)u(t). Let 

I = O'([a, b3,r162 (~ {t; lmt=�89 and let [ct', fl'] be a subinterval of I. Then 

[ct', fl'] = O'([ct, fl], r r ~ {t; Imt = �89 and [ct, f13 c [a, b 3. Lemma 3.6 and the 

relations Kl(t ,  ct) = Kl(t ,  ot')Kl(~',~) and K2(t, fl) = K2(t, fl')K2(fl',fl) that hold 

for t e [~', P'3 and the unique continuation property of analytic functions imply 

that for t e [~',fl'3 we have 

(3.48) ul ( t )=Kl( t ,~ ' )u , (~ ' )+ f ;Kx(t,~)f,x(~)f(v)dv + f~:Wl(t,,)u2(z)d'c , 

(3.49) u2(t) = K2(t, fl')u2(fl') + f P '  f 0, 
K2(t, v)E2(v)f(r)d~ + ~  W2(t, T)ul(r)dx. 

,It .It 
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Repeating the previous arguments we conclude that u(t) is analytic in 

O'([a, b], q~l, ~b2). 

Hence u(t) is analytic in O([a, b 1, ~bl, q~2). 

For t e O([a,b 1,01,02) and i = 1,2, set u~(t) = Ei(t)u(t). Note that if L(t) 

satisfies Theorem 3.8 (i)', (ii)', and (iii)' then for every compact subset K of O 

there exists a constant C 1 such that for t e K and 2 e 1"(- �89 - 0, �89 + 0) we have 

I[ (~/~t) (2 - A(t)-I)]1 __< C 1/[ 2 [. (See [8].) This observation, Lemma 3.5, Theorem 

3.7, and the validity of (3.48) and (3.49) for every horizonta lsubinterval [0t', fl'l 

of O([a, b], 01, 02) ensure that for t ~ O([a, b], 01,02) we have u(t) ~ D(A(t)) and 

(du/d o - A(t)u(t) = f(t).  

THEOREM 3.10. Let 0 be a convex, complex neighborhood of [a, hi. For t ~ 0 

let A(t ,x,D) be an l x I elliptic differential system of order co in G. Suppose that 

for t E 0 the boundary operator Bj(t, x, D), j = 1,..., �89 is of order coj < co in G. 

Denote by a(t,x) any of the coefficients of A(t ,x ,D) or of Bj( t ,x ,D), j  = 1, ...,�89 

Assume that a(t,x) has derivatives of all orders with respect to x that are 

continuous in 0 x (7. Suppose that for x EG, a(t,x) is analytic in O. Let 

0 < 0 ~ < � 8 9  i =  1,2, and suppose that for t~O a n d O e [ � 8 9  �89 

u [ - � 8 9 1 8 9  A(t ,x ,D) and Bj(t,x,D), j = 1,...,�89 satisfy 

Agmon's conditions on lo. Let f ( t )  be analytic in O. Assume that 

u(t) E C[a, b I n C~(a, b) 

and that for t c (a, b), u(t) ~ D(A~(t)) and (du /dt) -A~(t)u(t) = f( t )  holds. Then 

u(t) has an extension that is analytic in O([a, b], 01, 02). For t ~ O([a, bl, 01, 02) 

we have u(t) ~ D(A~(t) and (du /dt) - A~(t)u(t) = f(t) .  

PROOF. Arguing as in the proof of [4, Th. 4.81 we conclude that for every 

to ~ [a, b I there exists an interval [0q fl] such that to ~ (~, fl) and the assumptions 

of Theorem 3.9 hold in 0([~, fl], 01, 02). Hence there exists an h > 0 such that the 

assertions of the present theorem hold in O([a,b],01,02) r3{t; ]Imt[__< h}. 

Observing that (du/dt) - A~(t)u(t) = f( t )  for t e O([a, b], 01, 02) ~ {t; Imt = h} 

we complete the proof by repetition of the previous arguments. 
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